The Cauchy problem for the modified two-component Camassa–Holm system in critical Besov space
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe Cauchy Problem for Semilinear Parabolic Equations in Besov Spaces
In this paper we first give a unified method by introducing the concept of admissible triplets to study local and global Cauchy problems for semi-linear parabolic equations with a general nonlinear term in different Sobolev spaces. In particular, we establish the local well-posedness and small global well-posedness of the Cauchy problem for semi-linear parabolic equations without the homogeneou...
متن کاملInviscid limit for the two-dimensional Navier-Stokes system in a critical Besov space
In a recent paper [12], Vishik proved the global wellposedness of the two-dimensional Euler equation in the critical Besov space B 2,1. In the present paper we prove that the Navier-Stokes system is globally well-posed in B 2,1, with uniform estimates on the viscosity. We prove also a global result of inviscid limit. The convergence rate in L is of order ν.
متن کاملthe search for the self in becketts theatre: waiting for godot and endgame
this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...
15 صفحه اولOn well-posedness of the Cauchy problem for MHD system in Besov spaces
This paper studies the global well-posedness of solutions to the Cauchy problem of incompressible magneto-hydrodynamics system for large initial data in homogeneous Besov space Ḃ 2 p −1 p,r (R) for 2 < p < ∞ and 1 ≤ r < ∞. In the case of spatial dimension n ≥ 3 we establish the global well-posedness of solution for small data and the local one for large data in Besov space Ḃ n p −1 p,r (R), 1 ≤...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2015
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2014.01.003